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1. INTRODUCTION

My research program explores relationships between the combinatorics and geometry
of flag varieties, Schubert varieties and Coxeter groups. For over a century, Schubert vari-
eties have been studied due to their rich combinatorial and geometric structures. Schubert
calculus in relation to enumerative geometry is the main focus of Hilbert’s 15th problem.
Today, the study of Schubert geometry and combinatorics remains a very active field of
mathematics and there are many open questions regarding Schubert varieties. Most fa-
mously, finding a combinatorially positive rule for calculating the Schubert polynomial
structure constants remains open despite there existing a straightforward geometrical ex-
planation for positivity.

My research falls into three categories:

• Schubert varieties and fiber bundles: This research program involves studying
the combinatorial and geometric aspects of fiber bundle structures of Schubert
varieties. One of the main applications of this work is the calculation of genera-
tion functions which enumerate smooth and rationally smooth Schubert varieties.
Other applications include a pattern avoidance characterization of when Schubert
varieties have complete parabolic bundle structures. More details on this research
are given in Section 2.
• Schubert Calculus and its applications: This research program involves many

different aspects of Schubert calculus. My work on this topic include study-
ing Schubert calculus for Kac-Moody flag varieties, exploring saturation proper-
ties for T -equivariant cohomology, looking at recursive structures of the Belkale-
Kumar product and finding applications of Schubert calculus to problems in frame
theory and funcation analysis. More details on this research are given in Section
3.
• Recent and future research: Recently, I have been studying the Nash blow-ups of

Schubert varieties in relation to Peterson translation along T -stable curves. I also
have two projects that are currently in progress. The first is on understanding the
combinatorics of the cohomology ring of Springer fibers and the second is on the
product structure of noncommutative symmetric functions. More details on this
work is given in Section 4.

2. SCHUBERT VARIETIES AND FIBER BUNDLES

LetG be a Lie group over an algebraically closed field and letW denote the Weyl group
of G. The combinatorial properties of W are closely related to the geometry of Schubert
varieties of the flag manifold G/B. For example, the Poincaré series of a Schubert variety
X(w) is the rank generating function of the Bruhat interval [e, w]. In [32], Slofstra and I
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developed a new insight into the relationship between the combinatorics of Weyl groups
and the geometry of Schubert varieties through fiber bundle structures. Let P be parabolic
subgroup of G. The projection map

π : G/B → G/P

gives a P/B-fiber bundle structure on G/B. If WP denotes the Weyl group P, then there is
a unique parabolic decomposition of an element w = vu where u ∈ WP and v is minimal
length in the coset wWP . Restricting the projection π to the Schubert variety X(w) yields
the projection

π : X(w)→ XP (v)

where the generic fiber is isomorphic to X(u). However π does not usually induce a fiber
bundle structure on X(w).

Question 2.1. When is π restricted to X(w) an X(u)-fiber bundle?

Slofstra and I answer this question with the following combinatorial characterization.

Theorem 2.2. [32, Theorem 3.3] The map π restricted to X(w) a X(u)-fiber bundle if and only
if u is maximal length in [e, w] ∩WP .

We remark that Theorem 2.2 holds for Schubert varieties of Kac-Moody flag varieties
as well. We say a parabolic decomposition w = vu is a Billey-Postnikov (or BP) decompo-
sition if w satisfies either condition in Theorem 2.2. These decompositions were used by
Billey and Postnikov in [11] to give a root subsystem characterization of smooth Schubert
varieties in finite type. If X(w) is a smooth or rationally smooth variety, then we have:

Theorem 2.3. [32, Theorem 3.6],[34, Theorem 1.1] Let X(w) be a Schubert variety of finite
type or of affine type A. If X(w) is (rationally) smooth, then w has a BP decomposition with
respect to some maximal parabolic subgroup P ⊂ W.

Moreover, if X(w) is smooth, then the morphism π : X(w)→ XP (v) is smooth.

One immediate consequence of Theorem 2.3, is that a smooth Schubert variety in G/B
is an iterated fiber bundle of smooth Schubert subvarieties of generalized Grassman-
nian flag manifolds (G/P where P is maximal). This fact was previously known only
in type A [37, 40]. In [32, Theorem 3.8], we give a complete geometric description of
smooth Schubert varieties in G/B by classifying all smooth Schubert varieties in general-
ized Grassmannians. Another consequence is that we prove the Billey-Crites conjecture
in [10] which states that smooth Schubert varieties of affine type A correspond to affine
permutations avoiding patterns 3412 and 4231.

Our interest in fiber bundle structures of Schubert varieties has its origins in earlier
work where Slofstra and I study the combinatorics of Bruhat intervals [e, w] where w is an
element of some Coxeter group W . The property that a Schubert variety is smooth can be
replaced with the combinatorial notion that the Bruhat interval [e, w] is rank symmetric
with respect to length. In other words, the Poincaré polynomial

Pw(t) :=
∑
x∈[e,w]

t`(x)

is a palindromic polynomial. This condition is also equivalent to the Kazhdan-Lusztig
polynomial indexed by (e, w) being equal to 1. In [31], Slofstra and I show that much of
the theory on BP decompositions holds true for several families of Coxeter groups. For
example, we prove the following analogue of Theorem 2.3:
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Theorem 2.4. [31, Theorem 3.1] Suppose W has no commuting Coxeter relations. If Pw(t)
is palindromic, then w has a BP-decomposition with respect to some proper maximal parabolic
subgroup of W .

We remark that Theorem 2.4 holds for right angled Coxeter groups as well. Theorem
2.4 allows us to construct a combinatorial “fiber bundle” structure on any Coxeter group
element with a palindromic Poincaré polynomial. One surprising consequence is that the
number of elements for which Pw(t) is palindromic is finite for many infinitely large Cox-
eter groups [31, Corollary 3.5]. For uniform Coxeter groups, we calculate the generating
function for the number of such elements in [31, Proposition 3.8].

2.1. Enumerating smooth Schubert varieties. In [33], Slofstra and I develop a model we
call Staircase diagrams over a Dynkin graph which combinatorially encode the fiber bundle
structures of a Schubert variety arising from Theorem 2.3. Our main application is that we
derive the generating function for the number to smooth and rationally smooth Schubert
varieties of any classical finite type. This generating function was previously only known
in type A and was computed by Haiman [12, 20]. Specifically, define generating series

A(t) :=
∞∑
n=0

an t
n, B(t) :=

∞∑
n=0

bn t
n, C(t) :=

∞∑
n=0

cn t
n, D(t) :=

∞∑
n=3

dn t
n, BC(t) :=

∞∑
n=0

bcn t
n,

where the coefficients an, bn, cn, dn denote the number of smooth Schubert varieties of
types An, Bn, Cn and Dn respectively, and bcn denotes the number of rationally smooth
Schubert varieties of either type Bn or Cn.

Theorem 2.5. [33, Theorem 1.1] Let W (t) :=
∑

nwn t
n denote one of the above generating

series, where W = A, B, C, D, or BC. Then

W (t) =
PW (t) +QW (t)

√
1− 4t

(1− t)2(1− 6t+ 8t2 − 4t3)

where PW (t) and QW (t) are polynomials given in Table 1.

Type PW (t) QW (t)

A (1− 4t)(1− t)3 t(1− t)2

B (1− 5t+ 5t2)(1− t)3 (2t− t2)(1− t)3

C 1− 7t+ 15t2 − 11t3 − 2t4 + 5t5 t− t2 − t3 + 3t4 − t5
D (−4t+ 19t2 + 8t3 − 30t4 + 16t5)(1− t)2 (4t− 15t2 + 11t3 − 2t5)(1− t)
BC 1− 8t+ 23t2 − 29t3 + 14t4 2t− 6t2 + 7t3 − 2t4

TABLE 1. Polynomials in Theorem 2.5.

In [34, Theorem 1.2], Slofstra and I prove an analogous result for the generating func-
tion of smooth Schubert varieties of affine type A. One surprising consequence of these
enumerations is that the asymptotic growth rate for the number of Schubert varieties is
the same for each of the classical Lie types.
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2.2. Fiber bundle structures and pattern avoidance. For Schubert varieties of finite type
A, pattern avoidance have been used to characterize many geometery properties. Most
notably, Lakishmbai and Sandhya’s prove that a Schubert variety is smooth if and only
if its corresponding permutation avoids the patterns 3412 and 4231. Since then, pattern
avoidance has been used to characterize other properties such as being defined by inclu-
sions [19], factorial [13] and a local complete intersection [38]. These results have recently
been surveyed by Abe and Billey in [1]. In [2], Alland and I ask the following question:

Question 2.6. Does the Coxeter theoretic condition for a fiber bundle in Theorem 2.2 have a
pattern avoidance characterization in type A?

We answer this question by developing a new notion of pattern avoidance called split
pattern avoidance. Let Fl(n) denote the complete flag variety on Cn and Gr(r, n) denote the
Grassmannian of r-dimensional subspaces of Cn. There is a natural projection map

πr : Fl(n)→ Gr(r, n)

given by projection onto the r-th factor π(V•) := Vr. In this case, Schubert varieties X(w)
in Fl(n) are indexed by permutations.

Theorem 2.7. [2, Theorem 1.1] Let w ∈ W be a permutation. The map πr restricted to X(w) is
a fiber bundle if and only if w avoids the split patters 23|1 and 3|12 with respect to position r.

One consequence is that we give a usual pattern avoidance characterization of Schubert
varieties with complete parabolic bundle structures.

Theorem 2.8. [2, Theorem 1.3] Let w ∈ W be a permutation. Then X(w) has a complete
parabolic bundle structure if and only if w avoids the patterns 3412, 52341, 635241.

3. SCHUBERT CALCULUS

The goal of Schubert calculus is understand the product structure of various cohomol-
ogy theories of flag varieties and their generalizations with respect to a basis of Schubert
classes. Questions can either be geometric or combinatorial in nature. In this section, I
will discuss my research projects on Schubert calculus.

3.1. Grassmannian Schubert calculus and applications. This section is about two projects
involving Schubert calculus of the Grassmannian Gr(r, n) of r-dimensional subspaces in
Cn. The cohomology ring H∗(Gr(r, n)) has an additive basis of Schubert classes {σλ}λ∈Λ,
where Λ is the set of partitions whose Young diagrams are contained in an r × (n − r)
rectangle. For any three partitions λ, µ, ν ∈ Λ we can define the Littlewood-Richardson
coefficients cνλ,µ by the product structure constants

σλ · σµ =
∑
ν∈Λ

cνλ,µ σν .

The Littlewood-Richardson coefficients arise in several fields of mathematics including
the representation theory of the general linear group, the combinatorics of symmetric
functions, and quiver representations.

One remarkable application of Littlewood-Richardson coefficients is to the eigenvalue
problem on sums of hermitian matrices. The following theorem is proved by the com-
bined works of Klyachko [22] and Knutson and Tao [23].
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Theorem 3.1. ([22, 23]) The coefficient cνλ,µ > 0 if and only if there exist r× r hermitian matrices
A,B,C with eigenvalues given by the partitions λ, µ, ν and

A+B = C.

In joint work with Anderson and Yong [6], we are able to extend this result to the setting
of torus-equivariant cohomology of the Grassmannian H∗T (Gr(r, n)). Define the structure
constants Cν

λ,µ by the product of equivariant Schubert classes

Σλ · Σµ =
∑
ν∈Λ

Cν
λ,µ Σν .

We have the following theorem (omitting some technical constraints).

Theorem 3.2. [6, Theorem 1.3] The coefficient Cν
λ,µ > 0 if and only if there exist r× r hermitian

matrices A,B,C with eigenvalues given by the partitions λ, µ, ν and

A+B ≥ C.

Here a matrix A ≥ B if A − B is positive semi-definite. Theorem 3.2 is proved by
showing that Horn’s inequalities, which determine when cνλ,µ > 0, also determine when
Cν
λ,µ > 0 in the equivariant setting. As a corollary, we get an equivariant generalization of

the celebrated saturation theorem.

Theorem 3.3. [6, Thoerem 1.1] Cν
λ,µ > 0 if and only if CNν

Nλ,Nµ > 0 for any N > 0.

Another application of Theorem 3.1 is to frame theory, an important topic in functional
analysis. Let P1, . . . , Pk be a sequence of N × N orthogonal projection matrices and let
L := (L1, . . . , Lk) denote the corresponding rank sequence (i.e. rank(Pi) = Li). We say
that P1, . . . , Pk is a tight fusion frame if there exists a real number α such that

k∑
i=1

Pi = αI

where I denotes the identity matrix. Applications of fusion frames include sensor net-
works, coding theory, compressed sensing, and filter banks. In [14], together with Bownik
and Luoto, we address the problem of classifying all L that are rank sequences of some
tight fusion frame. Since orthogonal projection matrices are hermitian, we use Theorem
3.1 to prove the following classification.

Theorem 3.4. [14, Theorem 4.2] L = (L1, . . . , Lk) is a tight fusion frame sequence if and only
if

k∏
i=1

σ(NLi ) 6= 0

in H∗(Gr(N,M +N)) where M :=
∑k

i=1 Li and the partition (NLi) := (N, . . . , N)︸ ︷︷ ︸
Li

.

This connection between frame theory and Schubert calculus yields many interesting
results in both fields of mathematics. For example, using Schubert combinatorics, we
produce new bounding estimates on tight fusion frames previously unknown in frame
theory. Conversely, inspired by dualities found in frame theory, we construct new combi-
natorial identities for Littlewood-Richardson coefficients.
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3.2. Schubert calculus for Kac-Moody groups. In joint work with Berenstein from [8],
we study the Schubert calculus of the flag variety G/B corresponding to a Kac-Moody
group G. The structure of G is encoded by a generalized Cartan matrix (GCM), defined to
be a square matrix A = (ai,j) where ai,i = 2 and ai,j ∈ Z<0 if i 6= j. Thus for each GCM,
we can associate and study the cohomology ring H∗(G/B).

Like the cohomology of the Grassmannian, H∗(G/B) has an additive basis of Schu-
bert classes indexed by W , the Weyl group of G. We define the structure constants cwu,v by
the product

σu · σv =
∑
w∈W

cwu,v σw.

In [8, Theorem 2.4], we give a formula for computing cwu,v in terms of the GCM A. This
formula is based on the work of Kostant and Kumar in [24] where they define and study
nil-Hecke rings corresponding to Kac-Moody groups. While other formulas for Schubert
structure constants exist (see [17]), it has been a long-standing open problem to find a
formula that is “combinatorially positive”. Although it is well known from the geome-
try of G/B that the Schubert structure constants are non-negative integers, there are no
known combinatorial proofs of this positivity (except in a few very special cases). Our
new formula satisfies the following property.

Theorem 3.5. [8, Theorem 2.16] If the GCM A = (ai,j) of G satisfies

(1) ai,jaj,i ≥ 4

for all i, j, then the formula for cwu,v given in [8, Theorem 2.4] is combinatorially positive.

In other words, the formula we construct is completely algebraic and the proof of pos-
itivity does not rely on the geometry of G/B. The condition (1) is precisely the condition
that the Weyl group W has no braid relations or commuting relations as a Coxeter group.
Theorem 3.5 above and [8, Theorem 2.4] have both been extended to include Schubert
structure constants for the torus-equivariant cohomology H∗T (G/B) in [8].

3.3. Recursive formulas for structure constants. Let P ⊆ Q be a pair of parabolic
subgroups of a complex Lie group G and consider the induced sequence of partial flag
varieties

Q/P ↪→ G/P � G/Q.

When comparing the three flag varieties above, the variety G/P typically has the most
complicated cohomology structure. In [29, 30], I develop a recursive formula to com-
pute Schubert structure coefficients ofH∗(G/P ) in terms of the simpler cohomology rings
H∗(Q/P ) and H∗(G/Q) under certain constraints.

Theorem 3.6. [30, Theorem 1.1] Let (w1, w2, w3) ∈ (W P )3 with parabolic decompositions
wi = viui with respect to Q. If the triples (w1, w2, w3) and (v1, v2, v3) satisfy a certain numerical
constraint, then

cw3
w1,w2

= cv3v1,v2 · c
u3
u1,u2

.

One important class of coefficients satisfying these constraints of [30, Theorem 1.1]
are coefficients cwu,v corresponding to Levi-movable triples (u, v, w) defined by Belkale and
Kumar [7]. In [27], Ressayre shows that the set of Levi-movable triples, with cwu,v = 1,
indexes the interior faces of the eigencone corresponding to the group G. By applying
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the recursive formula [30, Theorem 1.1] to Ressayre’s work, I am able to determine the
inclusion relations of the faces of the eigencone.

In [28], Ressayre and I generalize the notion of Levi-movability to the setting of
“branching Schubert calculus”. Branching Schubert calculus refers to the problem of com-
puting the comorphism on cohomology rings induced from an equivariant embedding of
one flag variety into another. If we consider the diagonal embedding of a flag variety
into two copies of itself, then the comorphism on cohomology is simply the cup prod-
uct. Hence, branching Schubert calculus is a generalization of usual Schubert calculus.
We use the generalized definition of Levi-movable to give a more elegant solution to the
branching eigenvalue problem.

The main idea behind the proof of the recursive formula [30, Theorem 1.1] and its
various applications to Levi-movability is to use the fact that Schubert structure coeffi-
cients count the number of points in the intersection of corresponding sets of Schubert
varieties in general position. Since this intersection is transverse, we can apply tangent
space analysis.

4. CURRENT AND FUTURE RESEARCH

The following are some project either recently completed or in progress.

4.1. Nash blowups of Schubert varieties. The Nash blow-up of a complex algebraic va-
riety is the parameter space of tangent spaces over its smooth locus together with the
limits of tangents spaces over its singular locus. One motivation for studying the Nash
blow-up is that its tautological bundle serves as an analogue of the tangent bundle for
singular varieties. The existence of such a blow-up has led to the development of a char-
acteristic class theory for singular varieties [26]. For Schubert varieties, these classes have
been extensively studied in [3, 4, 5, 21]. While the Nash blow-up is an extremely impor-
tant object in class theory, its geometry and combinatorics is poorly understood. Recently
in [35], Slofstra, Woo and I calculate the Nash blow-up of cominuscule Schubert varieties
and show that the torus-fixed points of the Nash blow-up correspond to Peterson trans-
lates of the inversion set. This work is inspired by earlier work by Carrell and Kuttler in
[15] where they define Peterson translation on T -stable varieties and use it to determine
when a T -fixed point in the Schubert variety is smooth.

Theorem 4.1. [35, Theorem 2.1] Let ∆, ∆P denote the set of simple roots for G and P respec-
tively and letX(w) be a cominuscule Schubert variety inG/P . Further assume that w in minimal
length in the coset wWP .

Then the Nash blow-up X(w) is a Schubert variety. In particular, it is algebraically isomorphic
to BwQ/Q for the standard parabolic subgroup Q ⊆ P , where Q is generated by the set of simple
roots

∆w := {β ∈ ∆P | w(β) ∈ ∆}.

Theorem 4.1 has many consequences. First, it immediately implies that the Nash blow-
up of X(w) is a normal variety. Second, we use this result to give a new characterization
of the smooth locus of X(w). For Grassmannian Schubert varieties (which are all comi-
nuscule), we determine when the Nash blow-up is a resolution of singularities. We also
show that the Nash blow-up is a fiber product of left-peak and right-peak Zelevinsky
resolutions.
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4.2. Cohomology of Springer fibers. Precup and I are currently working on a project to
study the geometry and topology of Springer fibers. Our goal is to define a T -equivariant
analogue of the Garsia-Procesi (GP) basis for the cohomology of Springer fibers given in
[18]. One application is that we want to explicitly compute the pull back of a Schubert
class in cohomology. More precisely, let Xλ denote the Springer fiber corresponding to
the partition λ and let

φ : Xλ → Fl(n)

denote the inclusion map into the flag variety Fl(n).

Question 4.1. Let σw denote a Schubert class in H∗(Fl(n)). What is φ∗(σw) in terms of the GP
basis of H∗(Xλ)?

In [25], Kumar and Procesi develop a T -equivariant Borel model for the cohomology
of Springer fibers which is naturally compatible with the classical Borel model on the flag
variety. It is in this context that we hope to do our calculations by taking advantage of the
additional torus structure on these varieties. Combinatorially, this reduces to calculating
the structure constants of degenerate double Schubert polynomials with respect to our
new T -equivariant GP-basis.

4.3. Geometric Littlewood-Richardson rule. There are geometric ways of computing LR
coefficients cνλ,µ defined in Section 3.1. For any two partitions λ, µ, let X(λ, µ) denote the
corresponding Richardson subvariety of the Grassmannian. By Kleiman’s transversal-
ity, the cohomology class of the Richardson variety [X(λ, µ)] = σλ ∪ σµ and hence LR
coefficients can be calculated by studying the geometry of X(λ, µ). In [39], Vakil gives a
geometric Littlewood-Richardson rule in the form an algorithm derived by performing a
series of flag degenerations which breaks the Richardson variety into a union of Schubert
varieties. Combinatorially, Vakil’s algorithm uses checker boards and can be diagramed
by a rooted binary tree, where the root represents the Richardson variety and each node
represents a component of the degeneration. Degeneration techniques have also been
used by Coskun for Schubert calculus of the two step flag variety in [16]. Coskun’s al-
gorithm specializes to the Grassmannian and therefore computes LR coefficients as well.
Coskun’s algorithm is similar to Vakil’s algorithm in that it can be diagramed by a rooted
binary tree.

For any composition α, let sα denote the noncommutative Schur function as defined in
[9]. The noncommutative Littlewood-Richardson coefficients Cγ

α,β are defined as the structure
coefficients of the product

sα · sβ =
∑
γ

Cγ
α,β sγ

in the algebra of noncommutative symmetric functions. Bessenrodt, Luoto and van-
Willigenburg prove in [9] that the coefficients Cγ

α,β are nonnegative integers and are re-
finements of classical LR coefficients. More precisely, [9, Corollary 3.7] states for any
compositions α, β with underlying partitions shapes λ = α̃ and µ = β̃, we have

cνλ,µ =
∑
γ̃=λ

Cγ
α,β.

Tewari, van Willigenburg and I are working on a geometric explanation for this nonneg-
ative refinement.
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Problem 4.2. Determine a geometric Littlewood-Richardson rule for noncommutative LR coeffi-
cients.

With a slight modification to the geometric Littlewood-Richardson rule of Coskun in
[16], we make the following conjecture.

Conjecture 4.3. The geometric Littlewood-Richardson rule of Coskun [16, Algorithm 3.24] cal-
culates the product sα · sβ in the case that α is a reverse partition and β is a partition.

The output of Coskun’s algorithm is a collection “shifted” Schubert varieties where
classical LR coefficients are calculated by grouping those Schubert varieties in the col-
lection with the same cohomology class. Conjecture 4.3 claims that the refinement of
LR coefficients into noncommutative LR coefficients is captured by position data of each
shifted Schubert variety. In other words, noncommutative LR coefficients are calculated
by looking at position classes instead of cohomology classes.

We believe that Coskun’s algorithm can be modified to compute other noncommutative
LR coefficients.

Conjecture 4.4. The geometric Littlewood-Richardson rule [16, Algorithm 3.24] generalizes to
compute the product sα · sβ in the case that α is any composition and β is a partition.

We also believe this noncommutative algorithm can be diagramed by a rooted binary
tree similar to the algorithms in [16, 39]. A preliminary report of this work appears in
[36].
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